Exercices de déduction naturelle en logique propositionnelle Exo 1 Pour chaque séquent ci-dessous, s'il vous paraît sémantiquement correct, proposez une preuve en déduction naturelle à l'aide de FitchJS puis transcrivez la dans ce format ( exemples). Sinon, proposez un contre-modèle.

  1. Physique

Physique

Logiques L'UE compte 30h d'enseignement pour 3 ECTS. Nous utiliserons essentiellement les documents rédigés par Stéphane Devismes, Emmanuel Filiot, Pascal Lafourcade, Michel Lévy et Benjamin Wack ainsi que les logiciels FitchJS de Michael Rieppel et Logictools de Tanel Tammet. Je remercie chaleureusement ces collègues pour leur générosité! Chaque séance comporte une partie cours et une partie TD. Tous les documents nécessaires à la réussite de cette UE sont disponibles à partir de cette page.

Montrer que toutes les op�rations bool�ennes sont exprimables en fonction de nand. 2 Formes normale Rappels: Forme normale disjonctive: ( somme de produits) f = + i =1 i = n (. [�] p) Forme normale conjonctive: ( produits de sommes) f =. i =1 i = n ( + Forme normale Reed-Muller: ( xor de produits) f = xor i =1 i = n (. p) Exercice 4: Mettre en forme normale disjonctive, conjonctive et Reed-Muller les expressions suivantes: (1) � ( p. � ( q + s)) (2) � ( p. ( q + s) (3) � ( p + ( q. � s)). s 3 D�composition de Shannon Soient x 1, x 2,...., x n un ensemble de variables bool�ennes et f une expression bool�enne de ces variables ( f: I B n -> I B). D�finition: La d�composition de Shannon d'une fonction f selon la variable x k est le couple (unique) de formules: f = f [ faux / x k], = f [ vrai / x k] On a f = (� x k. f � x k) + ( x k. f x k). D�finition: L' arbre de Shannon pour un ordre fix� des variables x 1, x 2,...., x n est obtenu par la d�composition it�rative de f selon les variables x 1, x 2,...., x n.

  1. Soirée retrouvailles amis
  2. Logique propositionnelle exercice de
  3. Logique propositionnelle exercice a la
  4. Carte invitation anniversaire cheval à imprimer gratuite
  5. Logique propositionnelle exercice en
  6. Logique propositionnelle exercice 3

Indication: 12 lignes de FitchJS. ¬(p∧q) ⊢ ¬p∨¬ q Supposons la négation de la conclusion. Montrons p par l'absurde. Comme ¬p, ¬p∨¬q, ce qui contredit notre supposition. De même nous avons q et a fortiori p∧q, ce qui contredit la prémisse. Donc la conclusion est valide. Indication: 16 lignes de FitchJS. Exo 9 Considérez la loi du tiers exclu et sa preuve en déduction naturelle. Donnez une version FitchJS de cette preuve. Puis reformulez cette dernière en français, dans le style des raisonnements informels de l'exercice 8.

logique propositionnelle exercice 5

$\forall \veps>0, \ \exists \eta>0, \forall (x, y)\in I^2, \ \big(|x-y|\leq \eta\implies |f(x)-f(y)|\leq\veps\big). $ Enoncé Soit $n$ un entier naturel non nul. On note $C_n$ la courbe d'équation $y=(1+x)^n$ et $D_n$ la droite d'équation $y=1+nx$. Rappeler l'équation de la tangente à $C_n$ au point $A$ de $C_ n$ d'abscisse 0. Tracer (par exemple à l'aide d'un logiciel) $C_n$ et $D_n$ lorsque $n=2, 3$. En vous aidant du graphique pour obtenir une conjecture, démontrer si les propositions suivantes sont vraies ou fausses. $\forall n\in\mathbb N^*, \ \forall x\in\mathbb R, \ (1+x)^n\geq 1+nx$; $\forall n\in\mathbb N^*, \ \forall x\in\mathbb R_+, \ (1+x)^n \geq 1+nx$; $\exists n\in\mathbb N^*, \ \forall x\in\mathbb R, \ (1+x)^n =1+nx$; $\forall n\in\mathbb N^*, \ \exists x\in\mathbb R, \ (1+x)^n=1+nx$; $\exists n\in\mathbb N^*, \ \forall x\in\mathbb R^*, \ (1+x)^n>1+nx$. Enoncé Soit $f:\mathbb R\to\mathbb R$ une fonction. Exprimer à l'aide de quantificateurs les assertions suivantes: $f$ est constante; $f$ n'est pas constante; $f$ s'annule; $f$ est périodique.

Enoncé Soit $f:\mathbb R\to\mathbb R$ une fonction. Énoncer en langage courant les assertions suivantes écrites à l'aide de quantificateurs. Peut-on trouver une fonction qui satisfait cette assertion? Qui ne la satisfait pas? $\forall x\in \mathbb R, \ \exists y\in \mathbb R, \ f(x)< f(y);$ $\forall x\in\mathbb R, \ \exists T\in\mathbb R, \ f(x)=f(x+T);$ $\forall x\in\mathbb R, \ \exists T\in\mathbb R^*, \ f(x)=f(x+T);$ $\exists x\in\mathbb R, \ \forall y\in\mathbb R, \ y=f(x). $ Enoncé Déterminer les réels $x$ pour lesquels l'assertion suivante est vraie: $$\forall y\in[0, 1], \ x\geq y\implies x\geq 2y. $$ Enoncé Soit $f:\mathbb R\to\mathbb R$ une fonction. On considère la proposition $p$ suivante: $$p=(\exists t\in\mathbb R, \ \forall x\in\mathbb R, \ f(x) logique propositionnelle exercice corrigé